

Advanced Witness Systems Ltd.

sales@awstorque.co.uk

awstorque.co.uk

01295 266939

TORQUE TOOL RESOLUTIONS

A guide to interpreting scales for manual torque tools with reference to ISO 6789:2017

Non Fluctuating **DIGITAL**

R = Increment Size of Last Active Digit

0.0001

Nn

0.0002 Nm

Value is not fluctuating by 2 or more digits meaning the resolution is the value of the last active digit.

Resolution = 0.0001 Nm

Fluctuating DIGITAL

R = Increment Size of Last Active Digit + (1/2 x Fluctuation Range)

0.0001 Nm

Contact AWS for more information!

0.0007 Nm

Value is fluctuating by 2 or more digits meaning the resolution is the value of the last active digit + 1/2 of the fluctuation range.

Resolution = Last Active Digit + (1/2 x Fluctuation Range)

Resolution = 0.0001 + (1/2 x (0.0007-0.0001))

Resolution = 0.0004 Nm

MICROMETER

R = 1/2 of Smallest Increment (may be on secondary scale)

No secondary scale

Resolution = 1/2 x Scale Increment Value

Resolution = 1/2 x (10 - 5)

Resolution = 2.5 Nm

Smallest increment is on secondary scale

Resolution = 1/2 x Secondary Scale Increment Value

Resolution = 1/2 x (2-1)

Resolution = 0.5 Nm

Tool's scale is horizontal on the tool

Smallest increment is the gap between two of the smaller lines

Resolution = 1/2 x Smallest Scale Increment Value

Resolution = 1/2 x (12-10)

Resolution = 1 Nm

<1/5 of scale increment

ANALOGUE

R = 1/5 of Scale Increment

The pointer tip is less than 1/5 of the scale increment, meaning that the resolution available can be 1/5 of the scale increment value.

Resolution = 1/5 x Scale Increment Value

Resolution = $1/5 \times 1$

Resolution

= 0.2 Nm

> 1/5 & < 1/2 of increment

ANALOGUE

R = 1/2 of Scale Increment

The pointer tip is equal to or greater than 1/5, but less than 1/2 of the scale increment, meaning that the resolution available can be 1/2 of the scale increment value.

Resolution = 1/2 x Scale Increment Value

Resolution = 1/2 x 1

Resolution

= 0.5 Nm

> 1/2 of scale increment

ANALOGUE

R = Scale Increment Value

