

Understanding and Implementing Torque Standards relating to Torque Tools

With a focus on BS EN ISO 6789:2017

5 Things you will learn during this session:

- 1. Understanding the scope of the ISO 6789:2017 standard and the definition of its two parts.
- 2. Classes and differences of types of tools.
- 3. Explanation of the errors and uncertainties.
- 4. The requirements in calibration.
- 5. How to read the calibration certificate.

BS EN ISO 6789:2003

- This earlier version was a conformity standard, derived from the 1992 version and still much preferred by many.
- Used for conformity and calibration prior to 2017.
- It rated the tools as either within ±6% tolerance of reading below 10
 N.m or within ±4% tolerance of reading above 10 N.m. Dependant on tool type.
- The 2003 version did not have uncertainty calculations.

BS EN ISO 6789:2003

- Typical allowed test mounting and force application angle allowance.
- The time of force application over the last 20% of the setting on the torque tool.
- Accuracy of the measurement instrument to be within ± 1% of the indicated value.
- Settings for testing to be at 20%, 60% and 100% of full tool rating if a variable setting tool and 5 or 10 times operations at each setting where all readings were to be within the tolerance limits.
- Temperature to be within 20°C ± 5°C (Variation of ±1°C during calibration).

• Divided into 2 parts.

- Part 1 : Requirements and methods for design conformance testing and quality conformance testing: minimum requirements for declaration of conformance (BS EN ISO 6789-1:2017).
- Part 2 : Requirements for calibration and determination of measurement uncertainty (BS EN ISO6789-2:2017).

- Much more detailed document.
- Similar to the 2003 version.
- Drive types have been expanded to include hex drives.
- Definition of torque range of tools changed.
- Time of loading for last 20% of setting modified (Type II only).
- Importance of avoiding parasitic forces.
- Flow charts of methods (Annex C).
- Requirements for certificate of conformance.

- Entirely new part.
- Relies on part 1 for tool specifications , identification of tool types etc.
- Calibration only with no conformity statements.
- Addresses method of calibration.
- New section addressing and ascertaining Uncertainties of measurement.
- Annex C for requirements of the Torque calibration device or if the calibration laboratory already has a recognised standard this is accepted.
- Contains examples of calibrations to allow users to verify their methods, calculations and results.
- States the data to be present on the calibration certificate.

There are two categories that manual torque tools are classified into: Type I and Type II.

• Type I Indicating torque Tools: All subclasses (5 Readings).

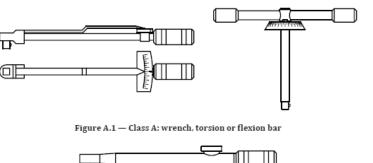


Figure A.2 — Class B: wrench, rigid housing, with scale or dial or display

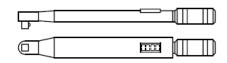


Figure A.3 — Class C: wrench, rigid housing and electronic measurement

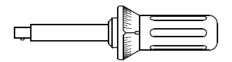


Figure A.4 — Class D: screwdriver, with scale or dial or display

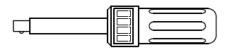


Figure A.5 — Class E: screwdriver, with electronic measurement

Advanced Witness Systems Ltd. Torque Measurement & Calibration ISO 6789:2017: Tool Types Cont'd.

- Type II Setting torque tools:
 - •Sub Classes A,D, and G. Adjustable
 - (5 Readings).
 - •Sub Classes B,C, E, F. Fixed(10
 - Readings).

Figure B.1 — Class A: wrench, adjustable, graduated or with display

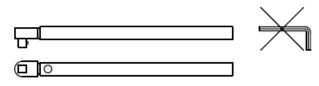


Figure B.2 — Class B: wrench fixed adjustment

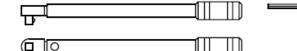


Figure B.3 — Class C: wrench, adjustable, non-graduated

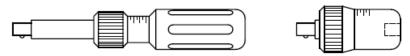


Figure B.4 — Class D: screwdriver, adjustable, graduated or with display

Figure B.5 — Class E: screwdriver, fixed adjustment

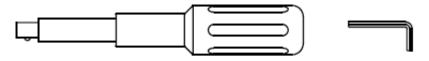


Figure B.6 — Class F: screwdriver, adjustable, non-graduated

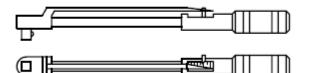
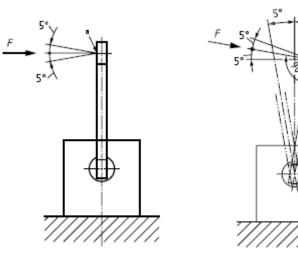
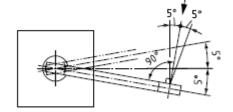
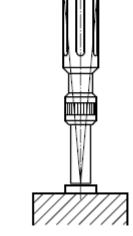
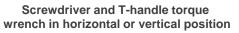



Figure B.7 — Class G: wrench flexion bar, adjustable, graduated

Set Up


- Mounting of Tools. Allowed configurations.
- Limits of force application control angles.





a) Wrench in a horizontal position

b) Wrench in 5° offset

a) Wrench in a vertical position

Ron Sangster © AWS Ltd 2020

www.awstorque.co.uk

ISO 6789:2017 Part 2 Calibration: Method Cont'd.

Set Up

- Minimising parasitic forces on the Tool handle during force application.
- Control of torque rate for last 20% of setting (Type II only).
- Allowed range of settings for calibration. Scale markings.
- Sources of Variation.
- Use of Drive adapters-uncertainties.
- Ratchet heads-rotation.

ISO 6789:2017 Part 2 Calibration: Method Cont'd.

Starting Calibration

• Exercise to full range or the fixed setting of the tool 3 times.

Variable setting or Indication Tools.

- Operation of Tool for the required number of readings at that setting, recording the readings and in the controlled manner of force application. (Repeatability)
- Disturbance of the tool, repeating the previous settings and record the readings (Reproduceability) Type I (All) and II Classes A,D and G only at the lowest setting, 4 sequences of 5 or 10 readings

ISO 6789:2017 Part 2 Calibration: Method Cont'd.

Fixed setting tools

- Exercise to full range or the fixed setting of the tool 3 times.
- Operation of Tool for the required number of readings(10), recording the readings and in the controlled manner of force application. (Repeatability)

ISO 6789: Part 2 Calibration: Uncertainties

- New but now common practise with measurement standards.
- For a tool calibration this is for many a new contentious and expensive to perform part of the standard.
- It requires prior knowledge of a number of aspects of that model of tool or to produce a table of uncertainties by multiple operations.
- If not known then 10 readings at lowest scale graduation of the tools range must be made for all the uncertainty requirements listed.
- This can be a live data base allowing a build up of knowledge to reduce further future testing.

ISO 6789:2017 Part 2 Calibration: Uncertainties Cont'd.

- Knowledge must be built up from testing 10 tools of the same model.
- It can be done by testing a tool 10 times.
- If the wrench has been calibrated to the standard before then its previous uncertainty values for Bod, Bint and Bl can be used.
- Full informative examples are shown in the Annex A for type I tools and B Type II setting torque tools of the standard.
- Formulae and the type of distribution equations applicable are also shown.

- 7 New Uncertainties. These being:
- w_r Uncertainty due to the variation in the scale, dial or display resolution
- w_{rep} Uncertainty due to reproducibility of torque tools
- w_{od} Uncertainty due to geometric effects of the output drive of the torque tool
- w_{int} Uncertainty due to geometric effects of the interface between the output drive of the torque tool and the calibration system
- w_l Uncertainty due to the variation of the force loading point
- w_{re} Uncertainty due to the repeatability
- w_{md} Relative standard measurement uncertainty of the measurement device at the target torque

ISO 6789:2017 Part 2 Calibration: Uncertainties Cont'd.

	Reco	rded		Total						
Measurements Type & for Calibration		w _{rep}	, w _{od} *		w _{int} *		<i>wl</i> *		Number of Testing	
Class	Ex	Re	Re	Ex	Re	Ex	Re	Ex	Re	Operations
All Type I. Type II Classes A, D & G	3	15	20	5	40	5	40	5	20	153
Type II Classes B, C, E & F	3	10	0	5	40	5	40	5	20	128

*Note: It is to be hoped that manufacturers can type test 10 of each of their models to provide the variation figures (b_{od}, b_{int}, b_l) as default values, which can be used to generate the uncertainty figures $(w_{od}, w_{int}, w_l$ respectively) to reduce the number of tests performed by the calibration laboratories. If all of these are supplied by the manufacturer, the total number of testing operations is reduced by 115.

**Note: No Wrep for Type II B,C,E & F.

- Require some skill on the operators behalf to over come the parasitic requirements, time control and manual effort when large torques are required.
- There is likely to be more uncertainty and operator fatigue.

Calibration Machines-Powered operation

- Remove much of the skill of the operators.
- Compensate by design to minimise parasitic forces.
- Time control 80-100% is automatic .
- No manual effort in torque/force application.

SO 6789: Part 2 Calibration: Examples

ISO 6789: Part 2 Calibration: Examples

ISO 6789: Part 2 Calibration: Examplesspread sheets and software

- The calibration recordings and calibrations can be accomplished using a comprehensive in house produced spread sheet program.
- It can be checked by using the data examples and results in the standard.
- Conversely there are proven software programs to carry out these operations .
- These may also have other attributes to assist in calibration management such as databases to store historical information, tracking, certification and certificate templates.

ISO 6789: Part 2 Calibration: Examples-

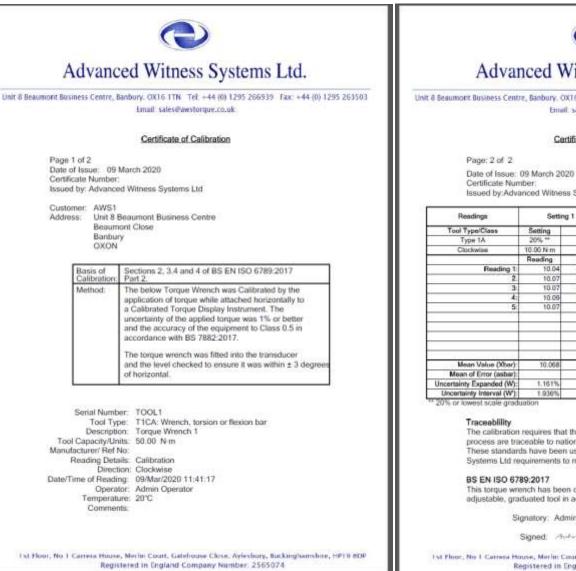
Exercise Readings	Regular Readings	wrep Readings	wod Readings	wint Readings	wl Readings	
adings:						Reading Control:
Regular I	Readings	Nomina	I Torque: 50.000 N.	n		
	Setting 1	Setting 2	Setting 3			Save. Continue To Next Reading
Setting:	10.000 N.m	30.000 N.m	50.000 N.m			
						Clear These Readings
Reading 1:	10.037	30.096	50.118			Review All Readings
Reading 2:	10.066	30.127	50.150			*** [
Reading 3:	10.072	30.140	50.179			Restart All Readings
Reading 4:	10.086	30.097	50.180			
Reading 5:	10.068	30.128	50.176			
						Cancel
						Cancel Reading

ISO 6789:2017 Part 2 Calibration: Uncertainties Cont'd.

	Works rder	Customer: Tool:	AWS1 TOOL1		Advance Torque V		Systems Ltd				orting Settings	E
eading Details	Read	ings General	Customer	r Tool S	tandard	Other Read	dings Calculation	s			Control Available Read	ings:
Date/Timestamp:		Readings		0	etting1	ĺ.	Setting		Setting	.2		1000
09/03/2020 11:41:17		Readings	k.	3	eungi		Seung	2	Setung	lo	09/03/2020 11:41	- 1971 N
Works Order No.:		Tool Type/Cla	iss	Setting			Setting		Setting		03/03/2020 11:30	
B000190		Type 1A		20% **			60%		100%			
		Clockwise		10.00 N·m			30.00 N·m		50.00 N m			
Certificate:				Reading		as	Reading	as	Reading	as		
		Re	eading 1:	10.	.04	-0.398%	30.10	-0.332%	50.12	-0.239%		
Tool Capacity:			2:	10.	.07	-0.695%	30.13	-0.431%	50.15	-0.299%		
50.00 N·m			3:	10.	220	-0.695%	30.14	-0.464%	50.18	-0.359%		
30.00 N III			10.	5.53	-0.892%	30.10	-0.332%	50.18	-0.359%			
Standard:	_		5:	10.	.07	-0.695%	30.13	-0.431%	50.18	-0.359%		
ISO6789-2017-T1CA	-				_						Print Read	lina
Reading Type:	-			-							PrintLab	
As Found											PrintLaL	ei
			2007-02				00.400		50 400		Extract to (CSV
Calibration Reading 6789:2017		Mean Valu	A. 2	10.0	00	-0.675%	30.120	-0.398%	50.162	-0.323%		
0703.2017		Mean of Erro		1.161	19/	-0.675%	0.413%	-0.398%	0.278%	-0.323%		
-	100 C	Uncertainty Expan		1.161	25,654		0.413%		0.278%			
Retest Date:		Uncertainty Inte	rval (W'):	1.950			0.312 %		0.701%			
09/03/2020 11:41:17	C	or lowest scale	graduatio	n)							Save Page D	efaults

ENGINEERING Solutions Live

www.awstorque.co.uk


ISO 6789:2017 Part 2 Calibration: Uncertainties Cont'd.

Home N	ew Works Order	Customer: Tool:	AWS1 TOOL1	Advanced Witness Torque Wrench 1		Reporting Settings			
ading Details	Read	ings General	Customer Too	I Standard Other Rea	adings Calculations			Control	
Date/Timestamp:					Setting 1	Setting 2	Setting 3	Available Readings:	
09/03/2020 11:41:17		Calculati	on Details for t	his Reading	10.00 Ñ·m	30.00 Ñ-m	50.00 Ñ-m	09/03/2020 11:41:17 < 09/03/2020 11:36:24	
Works Order No.:		Mea	an Value of Meas	urement Series (Xbar):	10.068	30.120	50.162	09/05/2020 11:30:24	
B000190	-	Mean Value	of Relative Meas	urement Error (asbar):	-0.675	-0.398	-0.323		
				ement Uncertainty (W):	1.161%	0.413%	0.278%		
Certificate:		Relative	Measurement U	ncertainty Interval (W'):	1.936%	0.912%	0.701%		
			Reso	ution of the Display (r):	0.000	0.000	0.000		
Tool Capacity:		y	Variation in the Di	splay Uncertainty (wr):	0.000%	0.000%	0.000%		
50.00 N·m	-		Reproduc	ibility Variation (brep):	0.104	0.104	0.104		
			Reproducib	ility Uncertainty (wrep):	0.298%	0.100%	0.060%		
Standard:		(C	alculated) Outpu	Drive Variation (bod):	0.139	0.139	0.139		
ISO6789-2017-T1CA			Output D	rive Uncertainty (wod):	0.399%	0.133%	0.080%	Drint Deading	
			(Calculated) In	terface Variation (bint):	0.033	0.033	0.033	Print Reading	
Reading Type:			Inte	face Uncertainty (wint)	0.095%	0.032%	0.019%	Print Label	
As Found		(Calcula	ated) Force Load	ing Point Variation (bl):	0.091	0.091	0.091		
			Force Loading	Point Uncertainty (wl):	0.261%	0.087%	0.052%	Extract to CSV	
Calibration Reading 6789:2017			Nu	mber of Readings (n):	5	5	5		
0703.2017			Repea	tability Variation (bre):	0.018	0.019	0.027		
			Repeata	bility Uncertainty (wre):	0.079%	0.028%	0.024%		
Retest Date:			Stated Measur	ing Device Error (bep)	0.100%	0.100%	0.100%		
09/03/2020 11:41:17	Sta	ated Expanded	l Measuring Devi	ce Uncertainty (Wmd):	0.150%	0.150%	0.150%	Save Page Defaults	

Reading the Calibration Certificate

Advanced Witness Systems Ltd. Torque Measurement & Calibration

Advanced Witness Systems Ltd.

Unit & Beaumont Business Centre, Banbury, OX16 1TN Tel: +44 (0) 1295 266939 Fax: +44 (0) 1295 263503 Email: sales@awstorgue.co.oli

Certificate Of Calibration

Issued by Advanced Witness Systems Ltd

Readings	Setting	11	Setting	12	Setting 3		
Tool Type/Class	Setting		Setting		Setting		
Type 1A	20% **		60%		100%		
Cłockwiae	10.00 N·m		30.00 N·m		50.00 N m		
Second-	Reading	as	Reading	85	Reading	85	
Reading 1:	10.04	-0.398%	30.10	-0.332%	50.12	-0.2399	
2	10.07	0.695%	30.13	-0.431%	50.15	-0.2997	
3	10.07	-0.695%	30.14	-0.454%	50.18	-0.359%	
4	10.09	-0.892%	30.10	0.332%	50.18	-0.359%	
5:	10.07	-0.695%	30.13	-0.431%	50.18	-0.3509	
			_				
Mean Value (Xbar)	10.068		30.120		50.162	-	
Mean of Error (asbar):		-0.675%		-0.398%		-0.3231	
Uncertainty Expanded (W):	1,161%		0.413%		0.278%		
Uncertainty Interval (W)	1.936%		0.912%		0.701%	-	

The calibration requires that the length and mass standards used in the process are traceable to national standards via a UKAS accredited laboratory. These standards have been used in accordance with Advanced Witness Systems Ltd requirements to maintain accurate and traceable equipment.

This torque wrench has been classified as a Type 2 Class A wrench. adjustable, graduated tool in accordance with the above standard.

Signatory: Admin Operator

Signed: chuluissand

1st Floot, No 1 Centers House, Merlin Court, Gatehouse Close, Aylesbury, Suckinghamshire, HP19 80P Registered in England Company Number: 2565074

- References: BS EN ISO 6789:2017, BS 7882, ISO/IEC 17025 copyright.
- Thank you all for attending and listening.
- Are there any questions?